

Cautious Blasting in Urban Areas

Society for Rock Mechanics & Engineering Geology Singapore, 07-12-2012

By Sjoerd Spijkerman

Opening Blast by Speaker

About the Company

- Swedish company in the field of tunneling and surface rock works
- Specialized in rock engineering/ cautious blasting in urban areas
- Network of associated companies working together in larger projects

Following Services

- Blasting consultancy (charge calculation, drilling design, vibration monitoring, production sequence design, airshock wave calculation)
- Blasting services (drilling and blasting, rock and concrete fracturing)
- Engineering geological services (engineering geological design and calculation, rock support)
- Planning, cost estimates/cost control
- Quality checks (analysis and design followups)
- Geological services (mapping bed-rock, tunnel mapping, groundwater studies)
- Construction management

Seminar topics

- General blasting issues
- Bench blasting / Tunnel blasting
- Vibration monitoring
- Alternative methods
- Example: City Link railway project

Cautious & Smooth Blasting

- Cautious blasting: blasting without causing damage to the environment
- Smooth blasting: blasting without causing damage to the remaining rock

"A great difficulty when it comes to determining the limit values for varying degrees of damage is due to the fact that there have been relatively few cases where damages could be proved"

From Modern technique of rock blasting by Langefors and Kihlström, 1963

Common Blasting Projects in Urban Areas High Priced Ground

- Foundation for building/construction/bridge projects
- Removing roads/railroads subsurface
- Removing cables/pipelines/sewer/drainage into tunnels
- Free surface ground for housing/offices, build below (storage, sporting arenas, parking, shopping)
- Cooling/heating plants

Conclusion: blasting is getting more complicated

Basics on Blasting

- Preparation works (permits, design, calculations, planning, time-cost estimates)
- Drilling
- Charging and detonation design
- Firing and safety control
- Mucking
- Cleaning and scaling
- Rock support
- Analyse of blasting procedure

Most Important: Geology

Considerations for Rock Excavation

Bench Blasting

Tunnel Blasting

2011/08/08 08:32

Risk Analyses Before Blasting

Risks in urban area blasting

Factors Influencing Blasting Effects

Differences in P-waves and S-waves

Drilling is the key to successfull Blastin

Drilling Design Pattern

Rock excavation on top of tunnel

Results...

Vibration Equipment

Automatically transfer

data to NCVIB.com

All instrument with GSM modem

📧 Sigicom - INFRA Remote - Master 3568 💿 🔍 💌						
Ändrat av: Senaste ändringen gjord AW 2009-10-27 10:58:54	Skicka ändringar och Stäng Stäng					
	SMS inställningar					
Master nr 3568	Nytt Befintligt Spara till server Hämta från server Ta bort rad					
Heg: OFF Status tod: 2009-10-27 13:51:19+01:00 Batterr: 13,45 V Projekt: Δkerionu GSM signal: 35 %	Namn Nummer Data Service					
Ny projekt text: Akerigru Ledigt minne: 119	B Atte Werneman 0046708814007					
Prog. version: 1.9.1	Stefan Hansson 0046708814116					
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Befinitiot schema: 06 09 12 14 16	22 23					
Tidzon: Europe/Stockholm Tidserver: ntp.infra.sigicom.net						

Dubbelklicka på raden, för att ändra data

Nod	ID	Ny nod data	Standard	Tröskel hög, aktiv	Tröskel hög	Enhet	Tröskel låg, aktiv	Tröskel låg	Transient	Intervall	Status	ŕ
S10-3454	AIR		1, SS025210 Luftst., 2000Pa 2-315Hz	OFF	(10)	Pa	N/A	N/A	10 sec	2 min		
V12V-5080	GEO		2, SS4604866 Spräng, 25mm/s 5-300Hz	ON	0,2	mm/s	N/A	N/A	10 sec	2 min		1.
V12L-5081	GEO		1, SS4604866 Spräng, 250mm/s 5-300Hz	OFF	(2)	mm/s	N/A	N/A	10 sec	2 min		1
V12T-5082	GEO		1, SS4604866 Spräng, 250mm/s 5-300Hz	OFF	(2)	mm/s	N/A	N/A	10 sec	2 min		
V12V-5090	GEO		2, SS4604866 Spräng, 25mm/s 5-300Hz	OFF	(2)	mm/s	N/A	N/A	10 sec	2 min		1
V12L-5091	GEO		2, SS4604866 Spräng, 25mm/s 5-300Hz	OFF	(2)	mm/s	N/A	N/A	10 sec	2 min		1.

Guide Values (PPV) for Different Types of Buildings

Utility tunnels – guide values

Type of tunnel	PPV, mm/s	PPD, mm		
Metro tunnels in rock (traffic operating)	60 – 92 (30)	-		
Metro tunnels – concrete (traffic operating)	100 (30)	-		
Utility tunnels	70 or 100	-		
District heating pipes	-	300 ¹⁾ mm		
¹⁾ Replaces rule that no blastings when temperature below -10 C				

Electronic Detonators Unlimited Time Delays

FEM modelling vibrations

Analysis of Blasting Results

där

v = förväntad svängningshastighet [mm/s]

R = avstånd mellan salvans sprängcentrum och mätpunkten [m]

Q_{sam} = max samverkande laddning [kg]

A och B = konstanter som beror på geologi, geometri och sprängtekniska förhållanden.

Choice of Explosives

The Behaviour of an Explosive

- Detonation velocity
- Strength
- Detonation stability
- Flash-over capacity
- Density
- Water sensitivity
- Detonation sensitivity
- Safety characteristics
- Environmental characteristics

Conclusion: the contractor must have a range of Different products in order to perform a successful blast.

Blasting Cord, But Splitting Along Crack

Damage zones of different explosives

Dynotex 17 mm

2011/01/12 11:42

Alternative Mechanized Methods

- Chipping /Hammering
- Fracturing hydraulic (fracturing tools or chemicals)
- Cutting the rock (Roadheader, diamond wire saw)

Rock Cracking Cartridges

- Hög säkerhet
- Låga vibrationer
- Låga tillståndskrav
- Kostnadseffektiv

Wire Cutting All Contours

Ш

1

Wire Cutting

FEM Analysis Effect of a Slot in the Contour

Result of FEM Analysis

	Dampening degree, PPV vertical direction
Bench 1	80 %
Bench 2	84 %
Bench 3	72 %

Average Damping Ratio

Monitoring Poing	Damping ration – bench 1, [%]	Damping ration – bench 3, [%]
Behind the slot,	72	71
Vertical direction		
Behind the slot,	50	61
Longitudinal		
Behind the slot,	42	33
Transversal		
Church, MS013-003,	77	75
Vertical		
Church, MS013-005,	69	37
Vertical		

Data provided by Nitro Consult

Example of Urban Blasting Project

Stockholm City Link Railway project

270 shops

14 hotels

14 workshops

15 physiotherapist centres

787 offices

4 highschools

10 rehabilitation centres

35 000 residents/working

6 film/sound studios

15 preschools

7 educational centres

10 churches

4 theatres

9 courts of justice

25 hospitals/dentists

96 restaurants

8 yogacentres

What is directly above the blasting area?

Risk Investigation Area

- Approx. 2000 Buildings above the rock tunnels
- 13 crossings with utility tunnels rock cover 0 to 10 meters
- 70 electrical substations
- 60 switching center for Telecommunications
- 4 crossings of metro tunnels & stations

Blasting for a New Metro Station

Potential Damage Risks

Relationship between natural frequency of wall and frequency of imposed vibration. Damages can be caused by:

- Elongation
- Shearing
- Bending

Existing static state of building unknown...

Foundation unknown or transfer mechanism between foundation and building unknown...

Vibration energy...

Solution: FEM modelling or conservative attitude

FEM Model of Gustaf Vasa Church

Results of Analysis

Part of the Church	Safe value, PPV mm/s	Comments
Foundation and Columns	30	Theoretical limit for new cracks 36 mm/s (tensilse strength 200 kPa)
Columbariet	20	
Arch vaults (Johannes, Matteus, Lukas)	20	Acceleration 4,8 g
Arch vault (Marcus)	15	Safety factor set at 5 for avoiding loosening of plaster
Altar Piece	10	Incoming vibration measured at floor level

Permitted Vibration Levels in Churches

Church	Permitted PPV, mm/s	Alarm value, mm/s	Comments
S:t Matteus Church	22	13	
Gustaf Vasa Church	18	13	
S:t Clara Church	12	5	Distance >40 m
Adolf Fredrik Church	7	3	Foundation on sand/gravel. Distance >130 m
Maria Magdalena Church	10	7	Foundation on sand/gravel.

Crack Monitoring

Sprickviddsmätning i Markusvalvet Gustaf Vasa kyrka

Crack Monitoring

Damages - Natural Causes or Blasting?

Fotodokumentation

Lokalisering av registrerade skador

Tillvarataget material från skadeställe 2 – detaljbild 2a och 2b

Conclusions

- Blasting works are fully possible in urban areas
- Rock blasting opens new possibilities (creating space)
- An accurate planning and execution is a demand
- Modern techniques available
- But... very many prejudices

Very important questions:

- What is a damage?
- Cost of damage vs. Cost of project

Thx to Trafikverket, Nitro Consult, Skanska & Royex

Thank you!

www.bergosprangteknik.se sjoerd@bergosprangtknik.se + 46 – 70 227 46 75

